Омические датчики rayvshalashe.ru

Омические датчики

Омические датчики

Омические (реостатные) датчики используют в системах контроля и измерения линейных и угловых перемещений, сил и моментов, колебаний и вибраций, ускорений и других неэлектрических вели­чин. К ним относят контактные, потенциометрические, угольные, тензометрические и другие датчики принцип действия которых основан на изменении омиче­ского сопротивления специаль­ных элементов под действием измеряемой входной величины.

Контактные датчики, замыкая или размыкая свои кон­такты, преобразуют механиче­ское воздействие в электриче­ский импульс переменного или постоянного тока. Последова­тельно с контактами включают сигнальные лампы, реле, усили­тели, измерительные приборы и другие устройства. При по­мощи контактных датчиков измеряют и контролируют усилия, про­межуточные и предельные перемещения, конфигурации и размеры изделий или отдельных узлов установки. Зона нечувствительности рассматриваемых датчиков определяется начальным зазором между контактами.

Рис. 63. Контактные датчики: а — однопредельный; б — многопредельный.

Контактные датчики могут быть однопредельными и многопредельными — для изме­рения величин, изменяющихся в значительных пределах. Основные недостатки контактных датчиков — сложность обеспечения непре­рывного контроля и ограниченный срок службы контактной си­стемы.

В потенциометрических датчиках контролируемое перемещение передается воспринимающему органу и преобразуется за счет изме­нения собственного электрического сопротивления датчика в пере­менное или постоянное напряжение. Резистор этих датчиков (рис. 64, а) включается по схеме потенциометра, благодаря чему они и получили свое название. Подвижный контакт потенциометра связан с контролируемым перемещением, при изменении положения объекта изменяется напряжение на вторичном приборе П, проградуированном в единицах контролируемого параметра. Чтобы исключить влияние отклонений напряжения, рекомендуется подавать питание на датчик от стабилизатора.

Характеристику потенциометрического датчика Іп =ƒ(Rx) стре­мятся сделать близкой к прямолинейной (рис. 64, б и г), задавая потен­циометру соответствующий режим работы, применяя тот или иной способ намотки проволочного реостата, а также согласуя сопротив­ление вторичного прибора. Если необходимо, чтобы выходной ток и напряжение соответствовали по знаку направлению перемещения движка, то используют потенциометр со средней точкой (рис. 64, г), характеристика которого дана на рисунке 64, г.

Для контроля угловых перемещений служат датчики с каркасами в виде дуги окружности (рис. 64, д). В качестве бесконтактных дат­чиков угловых перемещений с плавным выходом применяют жидкост­ные потенциометрические датчики (рис. 64е)

Рис. 64. Потенциометрические датчики: а — с прямым каркасом; б — характеристика датчика с прямым каркасом в-со средней точкой; г — характеристика датчика со средней точкой-‘ о — с кольцевым каркасом; е — бесступенчатый датчик угла поворота.

Характеристика и чувствительность потенциометрического дат­чика рассчитываются аналитически. Так, для схемы, изображенной на рисунке 64, а, можно составить следующие уравнения:

где Uст стабилизированное напряжение питания датчика;

R и l — полное сопротивление и длина намотки потенциометра; Rx сопротивление части потенциометра; Rп — сопротивление вторичного прибора; Iп и Iх — токи в сопротивлениях Rn и Rx.

Решая уравнения относительно Iп, получим: (34)

Если Rп то

Iп , (35)

Uп = IпRп=Uст

то есть выходные величины Iп и Uп прямо пропорциональны входной величине х.

Чувствительность датчика (соответственно А/м или В/м)

Kд.= или K д = (36)

Для датчика с кольцевым каркасом характеристики и чувстви­тельность определяют, исходя из следующих соображений.

Напряжение на вторичном приборе Un = Uст , а ток Iп = .

Если сопротивление потенциометра R равномерно распределено

по длине окружности, то зависимость тока в приборе от угла поворота а определяется уравнением

Iп = (37)

Где — радиус каркаса, м;

р — сопротивление обмотки, отнесенное к единице длины окружности, Ом/м-рад.

Чувствительность датчика (А/рад)

Kд = (38)

Зона нечувствительности проволочного потенциометрического дат­чика определяется диаметром провода (ошибкой ступенчатости), так как при перемещении подвижного контакта, равном диаметру провода, потенциал меняется скачками на значение Uст / n, где п — число витков потенциометра. У датчиков со сплошным полупроводя­щим покрытием потенциометра ошибка ступенчатости отсутствует.

Потенциометрические датчики отличает высокая точность и ста­бильность характеристик, простота конструкции и малые габариты. Кроме того, они обычно не нуждаются в усилителях, поскольку их выходная мощность достаточна для работы вторичных приборов. Благодаря этому подобные датчики получили широкое распростра­нение в автоматике.

К сожалению, наличие подвижных частей и скользящего контакта снижает надежность потенциометрических датчиков.

Угольные датчики используют принцип изменения собственного электрического сопротивления под действием приложенных сил.

Простейший датчик этого типа (рис. 65, а) представляет собой угольный столб, набранный из графитовых дисков. Диски располо­жены между контактными шайбами. Электрическое сопротивление угольного столба складывается из относительно небольшого собст­венного сопротивления дисков и основного сопротивления перехода между дисками, которое в значительной степени зависит от того, на­сколько плотно прилегают диски друг к другу, то есть от усилия сжатия, действующего на диски.

Рис. 65. Угольные датчики:

а—простейший угольный датчик; б — характеристика угольного датчика; в — дифференциальный угольный датчик.

На рисунке 65, б показаны кривые изменения сопротивления R (Ом) и выходного тока Iп (А) датчика в зависимости от усилия сжа­тия F(Н). Сопротивление угольного датчика

R= R о+ (39)

а ток во вторичном приборе

Іп = . (40)

где R — постоянная величина, равная сопротивлению столба при F -> , Ом; а — постоянный коэффициент, Ом-Н.

Чувствительность угольного датчика (Ом/Н) Kд=

Для повышения чувствительности таких датчиков применяют мостовые схемы включения угольных столбов (рис. 65, в). Входное усилие F вызывает в одном плече моста уменьшение сопротивления R1 в результате сжатия, а во втором — увеличение R2. Такие датчики называют дифференциальными. Чтобы рабочая точка находилась на линейной части характеристики, на угольный столб постоянно действует некоторое усилие сжатия Fo.

Основные недостатки угольных датчиков: нестабильность сопро­тивления, наличие гистерезиса и нелинейность характеристики. Наибольшая нелинейность характеристики простейшего угольного датчика соответствует области малых усилий. У дифференциального датчика характеристика близка к линейной.

Тензометрические датчики используют в своей работе зависимость электрического сопротивления материала от его деформации. Тензодатчики представляют собой тонкую проволоку (рис. 66, а, в), опре­деленным образом уложенную и обклеенную с двух сторон пленкой.

Рис. 66. Тензометрические датчики: а — петлевой; б — характеристика тензодатчика; в — для измерения кольцевых деформаций; 1 — бумага; 2 — проволока; 3 — выводы.

Тензодатчик приклеивают прочным клеем к испытываемой детали. При деформации детали изменяется электрическое сопротивление проволоки в результате изменения ее геометрических размеров и удельного сопротивления. Изменение сопротивления ΔR проволоки при ее сжатии и растяжении связано с относительной деформацией ε =Δι ⁄ι

Коэффициент чувствительности определяется уравнением

ќ =

где — относительное изменение удельного сопротивления проволоки при ее деформации; μ — коэффициент Пуассона (для металлов — 0,24 ÷ 0,4); р — удельное сопротивление металла;l — длина проволоки.

По измеренному относительному изменению сопротивления про­волоки ΔR/R вычисляют относительную деформацию Δ1/1 =

Зная зависимость Δ1/1 = ƒ (F), можно определить усилие F, изме­няющееся в широком диапазоне. Характеристика тензодатчиков линейна, поэтому их чувствительность практически постоянная (рис. 66, б).

Поскольку при работе датчика на измеряемую деформацию реагирует лишь часть его длины (например, исключаются участки закругления на рис. 66, а),, то его чувствительность к меньше коэф­фициента к, характеризующего чувствительность самого материала Датчика.

К недостаткам датчиков такого типа следует отнести некоторую температурную погрешность и малую чувствительность. Термоком­пенсация измерительных схем и применение высокочувствительных вторичных приборов с усилителями позволяют в значительной мере преодолеть эти недостатки. Наибольшее распространение получили нихромовые и константановые проволочные тензодатчики, для кото­рых K = 1,9÷ 2,2.

Читать еще:  Прочный балкон: металлический каркас и его характеристики

Дата добавления: 2015-04-11 ; просмотров: 147 ; Нарушение авторских прав

Устройство омических датчиков

Регулируемое омическое сопротивление можно рассмат­ривать как датчик перемещения.

Омические сигнализаторы уровня: а – одного уровня; б – двух уровней; 1 – электрод; 2 – электромагнитное реле; 3 – источник питания

Таким датчиком может быть реостат.

Действительно, при перемещении ползунка реостата изменяется его сопротивление.

Здесь перемещение ползунка яв­ляется входной величиной, а величина включенного в цепь омичес­кого сопротивления реостата — выходной величиной. В датчиках реостатного типа, кроме того, между перемещением движка и из­менением сопротивления должна быть определенная однозначная зависимость.

Рисунок 1. Варианты конструктивного выполнения реостатных датчиков.

Основными элементами реостатного датчика (рис. 1а) яв­ляются: 1 — каркас; 2 — нанесенное на него сопротивление в виде намотки из проволоки, полупроводника или какого-либо другого проводящего материала; 3 — подвижная щетка, скользя­щая по поверхности сопротивления или по ряду соединенных с ним контактов.

На рис. 1 показаны омические датчики 2-х типов: а) с бес­ступенчатой многооборотной намоткой; б) с секционированной намоткой.

В датчиках с секционированным сопротивлением при переме­щении щетки происходит ступенчатое изменение сопротивления, в то время как в датчике с бесступенчатой намоткой сравнительно плавное.

Преимуществом датчиков с секционированным сопротивлением является возможность управлять большими токами. Это обеспечи­вается тем, что работа контактов таких датчиков благодаря наличию шунтирующих сопротивлений происходит в наиболее благо­приятном режиме.

Характеристика линейного реостатного датчика имеет вид

  • Rx = (R : L)x, где;
  • Rx— сопротивление, включенное в цепь (ом);
  • L — полная длина намотки (см);
  • R— полное сопротивление намотки (ом);
  • х — перемещение щетки (см).

Рисунок 2. Схема включения потенциометрического датчика.

Если реостатный датчик включен по схеме потенциометра, то он носит название потенциометрического датчика. На рис. 2 показана схема включения такого датчика. Здесь величина напря­жения, снимаемого с реостата, зависит от положения движка. Действительно, если движок потенциометра находится в крайнем левом положении, то напряжение Uх, снимаемое с него, будет ми­нимальным (практически равным 0). По мере передвижения движка вправо снимаемое напряжение будет увеличиваться, а в крайнем правом положении оно будет равно напряжению на зажимах источника, т. е. UX=U.

Итак, напряжение на вольтметре V будет находиться в линей­ной зависимости от положения движка потенциометра;

Конструктивно реостатные датчики выполняются как датчики угловых и датчики линейных перемещений

Омические датчики просты, надежны в работе, а поэтому до­вольно широко распространены в технике в качестве электричес­ких датчиков механических перемещений, в дистанционном сле­дящем приводе и в счетно-решающих приборах.

Рисунок 3. Угольный датчик усилия.

Погрешность реостат­ных датчиков определяется ступенчатостью изменения сопротивления, изменением сопротивления намотки от температуры, неточностью технологического процесса изготовления (каркасов, намотки, зачистки контакт­ной дорожки).

Для измерения разви­ваемых усилий находит применение угольный дат­чик, который также следу­ет отнести к группе оми­ческих. Он позволяет пре­образовывать передаваемое на него усилие в электрическое сопротивление. Угольный датчик (рис. 3 а) собирается из графитовых дис­ков в столбик.

На концах столбика располагаются контактные дис­ки и упоры, через которые передается давление на диски. Электри­ческое сопротивление угольного датчика состоит из сопротивления самих дисков и переходных контактных сопротивлений между угольными дисками. Величина переходного контактного сопротив­ления зависит от величины сжимающей силы. Чем больше сила, сжимающая угольные диски, тем контактное сопротивление меньше.

На рис. 3 б приведен график зависимости сопротивления Rугольного датчика от приложенного усилия Р.

ЭСИС Электрические системы и сети

Информационно-справочный электротехнический сайт

Главное меню

Оммические (резистивные) датчики

Оммические (резистивные) датчики. Контактные, потенциометрические (реостатные), тензорезисторные, терморезисторные.

Датчик — это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.
Омические (резистивные) датчики — приборы, принцип действия которых основан на изменении их активного сопротивления при изменении длины I, площади сечения S или удельного сопротивления р.
Кроме того, используется зависимость величины активного сопротивления от контактного давления и освещенности фотоэлементов. В соответствии с этим омические датчики делят на группы:

  • контактные;
  • потенциометрические (реостатные);
  • тензорезисторные;
  • терморезисторные;
  • фоторезисторные.

Контактные датчики — это простейший вид резисторных датчиков, которые преобразуют перемещение первичного элемента в скачкообразное изменение сопротивления электрической цепи. С помощью контактных датчиков измеряют и контролируют усилия, перемещения, температуру, размеры объектов, контролируют их форму и т. д. К контактным датчикам относятся:

  • путевые и концевые выключатели;
  • контактные термометры;
  • электродные датчики, используемые в основном для измерения предельных уровней электропроводных жидкостей.

Контактные датчики могут работать как на постоянном, так и на переменном токе. В зависимости от пределов измерения контактные датчики могут быть однопредельными и многопредельными. Последние используют для измерения величин, изменяющихся в значительных пределах, при этом части резистора R, включенного в электрическую цепь, последовательно закорачиваются.
Недостаток контактных датчиков — сложность осуществления непре­рывного контроля и ограниченный срок службы контактной системы. Но благодаря предельной простоте этих датчиков их широко применяют в си­стемах автоматики.
Реостатные датчики представляют собой резистор с изменяющимся активным сопротивлением. Входной величиной датчика является перемещение контакта, а выходной — изменение его сопротивления. Подвижный контакт механически связан с объектом, перемещение (угловое или линейное) которого необходимо преобразовать.
Наибольшее распространение получила потенциометрическая схема включения реостатного датчика, в которой реостат включают по схеме делителя напряжения. Делителем напряжения называют электротехническое устройство для деления постоянного или переменного напряжения на части.
Делитель напряжения позволяет снимать (использовать) только часть имеющегося напряжения посредством элементов электрической цепи, состоящей из резисторов, конденсаторов или катушек индуктивности. Переменный резистор, включаемый по схеме делителя напряжения, называют потенциометром.
Обычно реостатные датчики применяют в механических измерительных приборах для преобразования их показаний в электрические величины (ток или напряжение), например, в поплавковых измерителях уровня жидкостей, различных манометрах.
Датчик в виде простого реостата почти не используется вследствие значительной нелинейности его статической характеристики Iн = f(x), где Iн — ток в нагрузке.
Выходной величиной такого датчика является падение напряжения Uвых между подвижным и одним из неподвижных контактов. Зависимость выходного напряжения от перемещения х контакта Uвых = f(x) соответствует закону изменения сопротивления вдоль потенциометра. Закон распределения сопротивления по длине потенциометра, определяемый его конструкцией, может быть линейным или нелинейным.
Потенииометрические датчики, конструктивно представляющие собой переменные резисторы, выполняют из различных материалов — обмоточного провода, металлических пленок, полупроводников и т. д.
Тензорезисторы (тензометрические датчики) служат для измерения механических напряжений, небольших деформаций, вибрации. Действие тензорезисторов основано на тензоэффекте, заключающемся в изменении ак­тивного сопротивления проводниковых и полупроводниковых материалов под воздействием приложенных к ним усилий.
Термометрические датчики (терморезисторы) — сопротивление зависит от температуры. Терморезисторы в качестве датчиков используют двумя способами.
Способ 1. Температура терморезистора определяется окружающей средой; ток, проходящий через терморезистор, настолько мал, что не вызывает нагрева терморезистора. При этом условии терморезистор используется как датчик температуры и часто называется «термометром сопротивления».
Способ 2. Температура терморезистора определяется степенью нагрева постоянным по величине током и условиями охлаждения. В этом случае установившаяся температура определяется условиями теплоотдачи поверхности терморезистора (скоростью движения окружающей среды — газа или жидкости — относительно терморезистора, ее плотностью, вязкостью и температурой), поэтому терморезистор может быть использован как датчик скорости потока, теплопроводности окружающей среды, плотности газов и т. п.
В датчиках такого рода происходит как бы двухступенчатое преобразование: измеряемая величина сначала преобразуется в изменение температуры терморезистора, которое затем преобразуется в изменение сопротивления.
Терморезисторы изготовляют как из чистых металлов, так и из полупроводников. Материал, из которого изготавливаются такие датчики, должен обладать высоким температурным коэффициентом сопротивления, по воз­можности линейной зависимостью сопротивления от температуры, хорошей воспроизводимостью свойств и инертностью к воздействиям окружающей среды. В наибольшей степени всем указанным свойствам удовлетворяет платина; в чуть меньшей — медь и никель.
По сравнению с металлическими терморезисторами более высокой чувствительностью обладают полупроводниковые терморезисторы (термисторы).

Читать еще:  Натяжной потолок своими руками: монтаж тканевого и пвх потолка

Особенности и принцип действия тензометрических датчиков

Измерение напряжений и усилий в действующих узлах и конструкциях оборудования считается одной из наиболее сложных задач. Между тем в процессе эксплуатации техника подвергается разным видам нагрузок, которые определяют долговечность и надежность оборудования. Решение поставленных задач возможно с помощью тензометрических датчиков. Установка подобных устройств целесообразна тогда, когда в дополнение к производственным факторам добавляются остаточные напряжения, постепенно накапливаемые в ходе работы.

Описание и назначение

При измерении деформаций, напряжений и усилий при помощи тензометрических датчиков используют изменение значений омического сопротивления материала, которое вызывается упругими деформациями металлической проволоки или полупроводников стержневого исполнения. Изменение сопротивления датчика передаётся при помощи кабеля или бесконтактным путем на измерительный мост. Там оно преобразуется в усиленные электрические сигналы, которые и фиксируются прибором.

Все типы тензометрических датчиков (или, иначе – тензорезисторов) используют зависимость между напряжениями и деформациями – закон Гука – который справедлив в области упругих деформаций. Согласно закону Гука изменение электросопротивления, отнесённое к исходному значению данного параметра до деформации, пропорционально изменению удлинения, отнесённому к первоначальной длине измерительного элемента. Применяя коэффициент пропорциональности, который зависит от диапазона измеряемых параметров и материала устройства, устанавливают зависимость между нагрузкой на датчик и его удлинением:

R – исходное значение электрического сопротивления;

ΔR – изменение значения электрического сопротивления в процессе деформации;

k – коэффициент пропорциональности;

Δl – изменение длины при деформировании;

l – исходная длина измерительного элемента до приложения к нему эксплуатационной нагрузки.

Указанный тип устройств используется в весоизмерительной технике, поскольку относится к тензорным, определяющим усилия и внешние нагрузки.

Применяемость рассматриваемых измерительных элементов определяется материалом, из которого выполнен датчик. Чаще всего исходным материалом служит сплав константан, состоящий из 40% никеля и 60% меди. Для константана k ≈ 2; таким же порядком значений (1.5…3,5) обладают и другие сплавы постоянного электросопротивления.

Датчики полупроводникового типа имеют более высокие значения коэффициента пропорциональности. В зависимости от материала полупроводника (кремний или германий), а также состава легирующих добавок значения коэффициента достигают 50…70. В связи с этим полупроводниковые тензометрические датчики более чувствительны, и их применяют для оценки малых удлинений. Вместе с тем полупроводниковые датчики характеризуются повышенными отклонениями своего удлинения в диапазонах 1,5…9 % относительного удлинения. Для проволочных датчиков этот показатель не превышает 0,5%.

Конструкции тензометрических датчиков проволочного типа разрабатываются с учетом следующих ограничений:

  • С целью получения достаточной точности измерений величина сопротивления проволочного элемента должна находиться в пределах 100…1000 Ом;
  • Диаметр проволоки целесообразно иметь в диапазоне 0,01…0,03 мм;
  • Длина проволочного элемента не должна превышать 250…300 мм.

В некоторых случаях приведенные ограничения не позволяют устанавливать тензометрические датчики в виде проволок, поэтому измерительные устройства изготавливают из фольги или плоских измерительных решеток. Для предохранения от повреждений, которые могут возникнуть при транспортировке или сборке таких датчиков, для их крепления в напольном исполнении применяют подложку из бумаги или тонкого пластика.

Чтобы обеспечить электрический контакт с измерительной решеткой, на подложке размещают проволочные выводы, которые затем присоединяются к датчику при помощи пайки.

Виды тензодатчиков, включающих в себя активный измерительный элемент, контактные выводы и подложку:

  1. Плоский проволочный.
  2. Фольговый.
  3. Полупроводниковый, с одним или двумя стержнями.
  4. Трубчатый.

Краткая характеристика наиболее распространённых исполнений тензодатчиков приводится далее.

  • Консольные. Предназначены для измерения крутящих и изгибающих моментов, устанавливаются в метах наибольшего прогиба конструкций.
  • Цилиндрические. Наименее компактны, зато позволяют определять значительные напряжения, приближающиеся по своим значениям к пределу текучести лимитирующего материала.
  • S-образные. Дают возможность оценивать трехмерные деформации при объемном напряженно-деформированном состоянии. Чаще других нуждаются в поверке.

Устройство и принцип работы

По типу воздействия на исполнительные элементы конструкции различают тактильные, резистивные, пьезорезонансные, пьезоэлектрические, магнитные и емкостные датчики.

Тактильные

Срабатывают в результате механического действия на чувствительную поверхность. Позволяют устанавливать минимальные деформации, но при неточных настойках могут подавать и ложный сигнал.

Резистивные

Наиболее распространенный тип датчиков. Требуют подключения к слаботочной управляющей цепи, поскольку включают в себя тензорезисторный контур. Надежны при любом состоянии окружающей среды.

Пьезорезонансные

Относятся к устройствам полупроводникового типа, нуждаются в надежном обслуживании и тонкой настройке. Работают по принципу сравнения эталонного сигнала с фактическим.

Пьезоэлектрические

По своему действию подобны измерителям предыдущего типа, но подают сигнал при изменении значений контактных деформаций, прикладываемых к чувствительному элементу.

Изготавливаются из сплавов с переменным значением коэрцитивной силы, используются при измерении усилий в узлах оборудования, работающих в сильных электромагнитных полях.

Предназначены для измерения малых механических напряжений в деталях со сложной конфигурацией, когда изменение длины токопроводящей проволоки изменяет ее электрическую емкость.

Характеристика

Для изготовления тензометрических датчиков необходимо использовать материалы проволок, относительное изменение сопротивления которых пропорционально удлинению в максимальном диапазоне деформаций. При этом коэффициент пропорциональности k должен иметь большие значения. Для компактных устройств со значительной чувствительностью приходится применять материалы, обладающие высоким удельным сопротивлением. При этом температурная зависимость удельного сопротивления при изменении внешних условий должна быть незначительной, а лучше и вовсе отсутствовать.

Условия оптимального использования тензорезисторов:

  • Малое различие между коэффициентами теплового расширения материала конструкции (или узла) и измерительной проволоки устройства.
  • Нечувствительность к термическим напряжениям, которые возникают при соединении измерительного элемента с контролируемой частью оборудования или конструкции (для такого присоединения чаще всего используют пайку).
  • Хорошая обрабатываемость паяных соединений, которая не изменяет эксплуатационные параметры оборудования.
  • Надежность соединения, учитывающая возможные динамические удары и перемещения.

На параметр пропорциональности k влияют коэффициент Пуассона ε (представляющий собой условную меру изменения поперечного сечения детали при приложении к ней растягивающих напряжений) и теплофизические параметры материала, из которого изготовлен тензометрический прибор.

Схемы подключения

Конструкции тензометрических датчиков, в частности, их малая жесткость, вынуждают применять особые способы подключения рассматриваемых элементов. Например, участки проволочной решетки в местах возможного изгиба при деформации часто располагаются поперечно к направлению измерений. Они воспринимают составляющие удлинения, действующие именно в этом направлении, и поэтому недостаточно точно реагируют на силы и деформации продольного направления. Отношение чувствительности измерения удлинений в продольном и поперечном направлениях для датчиков проволочного исполнения находятся в пределах от -0,01 до +0,04.

Влияние описанного фактора уменьшается, если для измерения напряжений, крутящих моментов или усилий использовать фольговые силоизмерительные датчики. По аналогии с печатными схемами, измерительная фольговая решетка, которая расположена на пластмассовой подложке, может быть получена в результате травления тонкой металлической фольги. Кроме того, токовая нагрузка на тензометрические датчики фольгового типа больше, чем на проволочные, вследствие чего тепло от фольговых тензометров отводится лучше.

Читать еще:  Какой герметик лучше для ванной комнаты

Тензорезисторы часто приклеиваются к исследуемому конструктивному элементу. Клеевое соединение обеспечивает постоянную передачу деформации через подложку на измерительную решетку. Поэтому к клеям предъявляется также и ряд особых требований:

  • Высокое сопротивление ползучести.
  • Отсутствие гистерезиса.
  • Влагостойкость.
  • Адгезионная способность.
  • Температуростойкость.

Наибольшую эксплуатационную надежность проявляют эпоксидные смолы холодного твердения. Для экспериментального определения многосторонней деформации используют розеточную систему данных устройств, которые образуют измерительный мост. При этом образованная схема состоит из не менее, чем четырех закрепленных на подложке датчиков, которые размещаются крестообразно, треугольником, т-образно, в виде звезды. Благодаря многолучевому размещению тензорезисторов их удлинения измеряются в двух, трех или четырех направлениях.

Сферы применения

Кроме определения удлинений, которые вызываются действием внешних нагрузок на конструктивные части оборудования, тензометрические датчики могут применяться для измерения собственных (остаточных) напряжений в момент их релаксации, это явление происходит при высверливании или разрезке некоторых конструктивных деталей и узлов.

Тонкопленочные датчики давления, которые изготавливаются путем осаждения из паровой фазы или распыления, используются для определения усилий, напряжений, крутящих моментов и деформаций в изоляционных элементах, которые размещаются непосредственно на полированных мембранах. Для калибровки резистивных элементов используется лазерная подгонка, повышающая точность замеров. Диффузионные полупроводниковые датчики давления могут проникать в кремниевую чувствительную к давлению диафрагму, и не связаны со свойствами поверхности. Это позволяет использовать их в технологиях миниатюрного тензометрирования.

Основным преимуществом тонкопленочных преобразователей является устранение нестабильности, вызванной клеем.

Технология тонких пленок считается более современной и обеспечивает превосходную стабильность при нулевом температурном режиме и полной чувствительности, а также высокую долговечность.

Часто применяемые условия для использования тензодатчиков перечислены далее.

Измерение веса

Необходимо в системах напольного типа, при помощи которых определяют массу груза. Характеризуются минимальными требованиями к точности монтажа и наладки.

Измерение давления

Используется в технологических линиях обработки металлов давлением. Одновременно производится также измерение рабочих сил и упругих деформаций. Датчики снабжаются силоизмерительным устройством с цифровой индикацией.

Измерение крутящего момента

Применяется для испытательного оборудования станций технического обслуживания автомобильного транспорта.

Определение ускорения

Иногда используется в экспериментальных лабораториях, где занимаются проектированием и испытаниями высокоскоростной рельсовой и безрельсовой техники.

Контроль перемещения

Самые распространенные отрасли применения – сейсмологические станции и фундаменты высокоточного массивного оборудования, преимущественно энергетического.

Плюсы и минусы

Тензорные датчики компактны, удобны при установке, практически не ограничивают работоспособность конструкции, где они установлены. Вместе с тем они часто подвержены эффекту старения, чувствительны к температурным напряжениям и иногда характеризуются повышенным разбросом получаемых данных. Тонкоплёночные тензорезисторы, кроме того, характеризуются низким уровнем выходного сигнала, ограниченными частотными характеристиками и влиянием высокого напряжения на точность получаемых результатов. Чаще других типов применяются в качестве весовых, а также для определения комплекса силовых факторов, постоянно изменяющихся в процессе работы оборудования или конструкции.

Преимущества тензометрических технологий:

  • Быстрое время отклика;
  • Простота компенсации температурных эффектов;
  • Малая чувствительность к динамическим воздействиям.
  • Невозможность обеспечить более низкие диапазоны измерений;
  • Снижение точности показаний при вибрациях;
  • Необходимость точного совмещения с окружающей средой;
  • Сложность первоначальной настройки.

Выпуск современных тензометрических датчиков регламентируется требованиями ГОСТ 21616-91.

Датчик – это элемент измерительного, сигнального, регулирующего или управляющего устройства, преобразующий контролируемую величину (температуру, давление, частоту, силу света, электрическое напряжение, ток и т.д.) в сигнал, удобный для измерения, передачи, хранения, обработки, регистрации, а иногда и для воздействия им на управляемые процессы. Или проще, датчик – это устройство, преобразующее входное воздействие любой физической величины в сигнал, удобный для дальнейшего использования.

Используемые датчики весьма разнообразны и могут быть классифицированы по различным признакам:

В зависимости от вида входной (измеряемой) величины различают: датчики механических перемещений (линейных и угловых), пневматические, электрические, расходомеры, датчики скорости, ускорения, усилия, температуры, давления и др.

По виду выходной величины, в которую преобразуется входная величина, различают неэлектрические и электрические: датчики постоянного тока (ЭДС или напряжения), датчики амплитуды переменного тока (ЭДС или напряжения), датчики частоты переменного тока (ЭДС или напряжения), датчики сопротивления (активного, индуктивного или емкостного) и др.

По принципу действия датчики можно разделить на два класса: генераторные и параметрические (датчики-модуляторы). Генераторные датчики осуществляют непосредственное преобразование входной величины в электрический сигнал.

Параметрические датчики входную величину преобразуют в изменение какого-либо электрического параметра (R, L или C) датчика.

Различают три класса датчиков:

— аналоговые датчики, т. е. датчики, вырабатывающие аналоговый сигнал, пропорционально изменению входной величины;

— цифровые датчики, генерирующие последовательность импульсов или двоич­ное слово;

— бинарные (двоичные) датчики, которые вырабатывают сигнал только двух уровней: «включено/выключено» (иначе говоря, 0 или 1); получили широкое распространение благодаря своей простоте.

По принципу действия датчики также можно разделить на омические, реостатные, фотоэлектрические (оптико-электронные), индуктивные, емкостные и д.р.

Требования, предъявляемые к датчикам:

— однозначная зависимость выходной величины от входной;

— стабильность характеристик во времени;

— малые размеры и масса;

— отсутствие обратного воздействия на контролируемый процесс и на контролируемый параметр;

— работа при различных условиях эксплуатации;

Омические (резистивные) датчики– принцип действия основан на изменении их активного сопротивления при изменении длины l, площади сечения S или удельного сопротивления p:

R= pl/S

Кроме того, используется зависимость величины активного сопротивления от контактного давления и освещённости фотоэлементов. В соответствии с этим омические датчики делят на: контактные, потенциометрические (реостатные), тензорезисторные, терморезисторные, фоторезисторные.

Индуктивные датчики служат для бесконтактного получения информации о перемещениях рабочих органов машин, механизмов, роботов и т.п. и преобразования этой информации в электрический сигнал.

Принцип действия индуктивного датчика основан на изменении индуктивности обмотки на магнитопроводе в зависимости от положения отдельных элементов магнитопровода (якоря, сердечника и др.). В таких датчиках линейное или угловое перемещение X (входная величина) преобразуется в изменение индуктивности (L) датчика. Применяются для измерения угловых и линейных перемещений, деформаций, контроля размеров и т.д.

Емкостные датчики — принцип действия основан на зависимости электрической емкости конденсатора от размеров, взаимного расположения его обкладок и от диэлектрической проницаемости среды между ними.

Для двухобкладочного плоского конденсатора электрическая емкость определяется выражением:

С = eeS/h

где e — диэлектрическая постоянная; e — относительная диэлектрическая проницаемость среды между обкладками; S — активная площадь обкладок; h — расстояние между обкладками конденсатора.

Зависимости C(S) и C(h) используют для преобразования механических перемещений в изменение емкости.

Генераторные датчики осуществляют непосредственное преобразование входной величины X в электрический сигнал. Такие датчики преобразуют энергию источника входной (измеряемой) величины сразу в электрический сигнал, т.е. они являются как бы генераторами электроэнергии (откуда и название таких датчиков — они генерируют электрический сигнал).

Индукционные датчики преобразуют измеряемую неэлектрическую величину в ЭДС индукции. Принцип действия датчи­ков основан на законе электромагнитной индукции. К этим датчикам относятся тахогенераторы постоянного и переменного то­ка, представляющие собой небольшие электромашинные генерато­ры, у которых выходное напряжение пропорционально угловой ско­рости вращения вала генератора. Тахогенераторы используются как датчики угловой скорости.

Ссылка на основную публикацию
Adblock
detector